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Abstract

The aim of this paper is to get asymptotic deviation bounds via a Large Deviation Principle (LDP) for
umulative processes also known as compound renewal processes or renewal-reward processes. These
rocesses cumulate independent random variables occurring in time interval given by a renewal process.
ur result extends the one obtained in Lefevere et al. (2011) in the sense that we impose no specific
ependency between the cumulated random variables and the renewal process and the proof uses Mariani
nd Zambotti (2014). In the companion paper Cattiaux et al. (2022) we apply this principle to Hawkes
rocesses with inhibition. Under some assumptions Hawkes processes are indeed cumulative processes,
ut they do not enter the framework of Lefevere et al. (2011).
2023 Elsevier B.V. All rights reserved.

SC: 60F10; 60K15
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1. Introduction

1.1. Cumulative processes

Cumulative processes have been introduced by Smith [14] and are applied in many
urposes, such as finance where they are called compound-renewal processes or renewal-reward
rocesses. Indeed these continuous time processes cumulate independent random variables
ccurring in time interval given by a renewal process. To be more specific a real valued process
Z t )t≥0 is called a cumulative process if the following properties are satisfied:
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(1) Z0 = 0,
(2) there exists a renewal process (Si )i≥0 such that for any i , (ZSi +t − ZSi )t≥0 is independent

of S0, . . . , Si and (Zs)s<Si ,
(3) the distribution of (ZSi +t − ZSi )t≥0 is independent of i .

o study such processes, we write for all t ≥ 0

Z t = W0(t) + W1 + · · · + WMt + rt ,

here W0(t) = Z t∧S0 , (Wi )i≥1 are i.i.d. random variables defined by Wi = ZSi − ZSi−1 , and rt

s the remaining part rt = Z t − Z Mt where Mt is the integer defined by

Mt = sup {i ≥ 0, Si ≤ t} .

e denote by (τi )i≥1 the waiting times associated to the renewal process τi = Si − Si−1. It is
orth noticing that τi and Wi can be dependent.
In the sequel we suppress the subscript i when dealing with the distribution (and all

ssociated quantities like expectation, variance ...) of (τi ,Wi ) and simply use (τ,W ).
A simple example of cumulative process is Z t =

∫ t
0 f (Xs)ds where (X t )t≥0 is a regenerative

rocess with i.i.d. cycles [10]. Markov additive processes are other classical examples of
umulative process. In [7] the authors exhibited a renewal structure for some Hawkes processes.
his description is extensively used in our companion paper [6] in order to describe such
rocesses as cumulative processes, and to study their asymptotic behaviour.

For R-valued cumulative processes, the law of large numbers (assuming that E[|W |] and
[τ ] are not infinite)

Z t

t
a.s.
−→
t→∞

E[W ]
E[τ ]

if and only if E
(

max
S0≤t<S1

|rt |

)
< ∞ ,

nd the central limit theorem (assuming Var(W ) < ∞ and Var(τ ) < ∞)(
Z t − t E[W ]

E[τ ]

)
√

t
−→
t→∞

N
(
0, σ 2) where σ 2

=
1

E(τ )
Var

(
W −

E[W ]
E[τ ]

τ

)
an be found in Asmussen [1], theorem 3.1 and theorem 3.2.

Brown and Ross [5] have proved an equivalent of Blackwell’s theorem and of the key
enewal theorem for a subclass of cumulative processes, since cumulative processes are a
eneralization of renewal processes. Glynn and Whitt have focused in [10] on cumulative
rocesses associated to a regenerative process and have proved law of large numbers (strong
nd weak), law of the iterated logarithm, central limit theorem and functional generalizations
f these properties.

The aim of this work is to obtain asymptotic bounds in order to build confidence intervals.
o this end we are looking at a large deviation principle (LDP) for cumulative processes.
ome works have already been done. For instance, Duffy and Metcalfe [9] have considered

he estimation of a rate function for a cumulative process (if it admits a LDP).
In a series of papers, Borovkov and Mogulskii [2–4] have studied the LDP (they use the term

ompound-renewal process), under some Cramer type assumptions. Actually, some points in
heir approach are not clear for us. After the submission of the present paper, Zamparo posted
n ArXiv a preprint, now published in [17], that extends Borovkov–Mogulskii approach, and
s based on Cramer’s theory. The same author had previously studied in [16] the case of a

iscrete valued τ .
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Another possible approach based on a higher level LDP, namely at the level of empirical
easures, was developed by Lefevere, Mariani and Zambotti [12]. In this work they study

pecific cumulative processes where Wi = F(τi ) for some deterministic function F which is
ssumed to be non-negative, bounded and continuous. In a first version of this paper, we have
xtended their method to general pairs (τ,W ) in R+

× R. As suggested by the referee, our
intricate proof can be simplified by using the Sanov type theorem obtained by Mariani and
Zambotti in [13], what we shall do in the present work. Actually the proofs in [13] greatly
simplify and extend the corresponding result for the empirical measure in [12] (as well as our
previous proof of this result).

In this paper, we look at a LDP for Z t/t in the case rt = 0 and S0 = 0. This assumption
an be relaxed if rt/t tends to 0 quickly enough, as it will be the case for the application to
awkes process (see [6]), we shall briefly recall. For example, if for all δ > 0

lim sup
t→∞

1
t

logP
(

|rt |

t
> δ

)
= −∞,

then Z t/t and (Z t − rt )/t are exponentially equivalent. They then admit the same asymptotic
deviation bounds.

1.2. Motivation: Application to Hawkes processes

A Hawkes process is a point process on the real line R characterized by its intensity process
t ↦→ Λ(t). We consider an appropriate filtered probability space (Ω ,F , (Ft )t≥0,P) satisfying
the usual assumptions.

Definition 1.1. Let λ > 0 and h : (0,+∞) → R a signed measurable function. Let N 0 a
locally finite point process on (−∞, 0] with law m.

The point process N h on R is a Hawkes process on (0,+∞), with initial condition N 0 and
eproduction measure µ(dt) = h(t)dt if:

• N h
|(−∞,0]= N 0,

• the conditional intensity measure of N h
|(0,+∞) with respect to (Ft )t≥0 is absolutely

continuous w.r.t the Lebesgue measure and has density:

Λh
: t ∈ (0,+∞) ↦→ f

(
λ+

∫
(−∞,t)

h(t − u)N h(du)
)
. (1.1)

or some non-negative function f .

Hawkes processes have been introduced by Hawkes [11]. Most of the literature concerned
ith the large time behaviour of N h

t = N h([0, t]) is dedicated to the case h ≥ 0 (self excitation).
his behaviour is studied in detail in [6] when h is a signed (the negative part modelling self

nhibition) compactly supported function, and the function f (called the jump rate function) is
iven by

f (u) = max(0, u) .

In this situation one gets a description of N h
t as a cumulative process (see [6] subsection 2.3)

ith few information on the joint law of (τ,W ). This was the initial motivation for the present
ork. In particular, controlling the asymptotic deviation from the mean, in this framework with
nbounded Wi ’s, can lead to asymptotic confidence intervals. We refer to Corollary 2.13 [6] for
more complete overview and explicit results in this situation. We shall discuss this situation
ater.
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2. Notations and main result

2.1. First notations

We consider (τi ,Wi )i≥1 an i.i.d. sequence of pairs of random variables built on some
probability space (Ω ,F ,P) with values in [0,+∞] × R. Actually we are mainly interested
in the case where W takes non-negative values which is the case for Hawkes processes.

The law of (τi ,Wi ) is an arbitrary probability measure ψ on (0,+∞) × R. We denote this
by: (τi ,Wi ) ∼ ψ . In the sequel we generically use the notation (τ,W ) for a pair with the same
distribution as (τi ,Wi ). Notice that we thus assume that

ψ(τ = 0) = ψ(τ = +∞) = 0

which is Assumption (A1) in [13], implying in particular that E(τ ) > 0.
We denote by M1(X ) the space of probability measure on some measurable space (X ,G).
We consider the renewal process associated with (τi )i≥1 :

S0 = 0, Sn =

n∑
i=1

τi ,

Mt = sup {n ≥ 0, Sn ≤ t} .

We will study the quantity:

Z t =

Mt∑
i=1

Wi , (2.1)

where as usual an empty sum is equal to 0.
The first main goal of this paper is to prove a Large Deviation Principle for the process

(Z t/t)t≥0. Let us recall some basic definitions in large deviation theory (we refer to [8]).
A family of probability measures (ηt )t≥0 on a topological space (X , TX ) equipped with its

Borel σ -field, satisfies the Large Deviations Principle (LDP) with rate function J (.) and speed
γ (t) = t if J is lower semi-continuous from X to [0,+∞], and the following holds

− inf
x∈O

J (x) ≤ lim inf
t→+∞

1
t

log ηt (O) for all open subset O, (2.2)

nd

− inf
x∈C

J (x) ≥ lim sup
t→+∞

1
t

log ηt (C) for all closed subset C. (2.3)

e shall say that (ηt )t≥0 satisfies the full LDP when (2.2) and (2.3) are satisfied, while we will
se weak LDP when C closed is replaced by C compact in (2.3). When ηt is the distribution
f some random variable Yt (for instance Z t/t) we shall say that the family (Yt )t≥0 satisfies a
DP.

Since J is lower semi-continuous the level sets {x ∈ X , J (x) ≤ a} are closed. If in addition
hey are compact, then J is said to be a good rate function.

In this paper we only consider the speed function γ (t) = t so that we will no more refer to
t.

A particularly important notion for our purpose is the notion of exponentially good
pproximation.
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Definition 2.1. Assume that (X , d) is a metric space. A family of random variables
{(Yn,t )t≥0}n∈N is an exponentially good approximation of (Yt )t≥0 (all these variables being

efined on the same probability space (Ω ,P)), if for all δ > 0 it holds

lim
n→∞

lim sup
t→∞

1
t

logP(d(Yn,t , Yt ) > δ) = −∞ .

The key result is then

heorem 2.2. In the framework of Definition 2.1, assume that {(Yn,t )t≥0}n∈N is an exponen-
ially good approximation of (Yt )t≥0. Then the following statements hold true.

(1) If {(Yn,t )t≥0}n∈N satisfies a full LDP with rate function J n then (Yt )t≥0 satisfies a weak
LDP with rate function

J (x) = sup
δ>0

lim inf
n→∞

inf
d(y,x)<δ

J n(y) .

(2) If X is locally compact, then the same conclusion is true when {(Yn,t )t≥0}n∈N satisfies
only a weak LDP.

(3) If J (defined above) is a good rate function such that for any closed set F,

inf
y∈F

J (y) ≤ lim sup
n→∞

inf
y∈F

J n(y),

then (Yt )t≥0 satisfies a full LDP with rate function J .

The first and last points in the previous Theorem are contained in [8] Theorem 4.2.16. The
econd one is a consequence of the fact that closed balls are compact sets. Usually, the Theorem
s sufficient to prove a full LDP. Nevertheless, in some cases, the study of the rate function J
s difficult. The lemma below gives an alternative, using exponential tightness which is easy
o obtain with our assumptions.

emma 2.3. If (Yt )t≥0 satisfies a weak LDP with a rate function I and is exponentially tight,
.e. for all α > 0, there exists a compact set Kα such that

lim sup
t→∞

1
t

logP
(
Yt /∈ K c

α

)
< −α,

hen (Yt )t≥0 satisfies a full LDP and I is a good rate function.

This Lemma is a consequence of the Lemma 1.2.18 in [8].

2.2. Main results

Introduce the following quantities

θ0 := sup
θ≥0

{E[eθτ ] < ∞} , (2.4)

and

η0 := sup
η≥0

{E[eη|W |] < ∞} . (2.5)

Also introduce the classical Cramer transform, for (a, b) ∈ R2,

Λ∗(a, b) = sup {ax + by − logE(exτ+yW )} . (2.6)

(x,y)∈R2
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We finally define, for (m, β, x, y) ∈ R4,

Λ(m, β, x, y) = x + my − β logE
(
exτ+yW ) (2.7)

and the rate function J for any m ∈ R,

J (m) = inf
β>0

β Λ∗

(
1
β
,

m
β

)
,

= inf
β>0

sup
x,y

Λ(m, β, x, y) . (2.8)

We then may state

heorem 2.4. Assume that η0 > 0 and θ0 > 0. Let J be given by (2.8) and J̄ be defined as

J̄ (m) = J (m) for m ̸= 0,

J̄ (0) = min(J (0), θ0) .

• If η0 = +∞ (in particular if W is bounded) then (Z t/t)t≥0 satisfies a full LDP with good
rate function J̄ .

• If η0 < +∞, denoting m = E(W )/E(τ ) we have for all a > 0 and κ ∈ (0, 1)

lim sup
t→∞

1
t

logP
(

Z t

t
≥ m + a

)
≤ − min

[
inf

z≥m+κa
J̄ (z) ,

η0a(1 − κ)
4

]
, (2.9)

and similarly

lim sup
t→∞

1
t

logP
(

Z t

t
≤ m − a

)
≤ − min

[
inf

z≤m−κa
J̄ (z) ,

η0a(1 − κ)
4

]
. (2.10)

emark 2.5. A short discussion. As we said in [6], the direct Cramer’s approach in e.g. [17]
urnishes more general results but with a much less explicit rate function.

In particular, contrary to [17], when η0 < +∞ we do not provide a LDP principle but
symptotic deviation bounds. These bounds are actually what is useful from a statistical point
f view, since they allow to build confidence intervals around the asymptotic mean.

Due to the fact that we are using the results in [13], the method we will develop here
xtends immediately to W taking its values in Rk or even in a general infinite dimensional

normed vector space, provided θ0 = +∞ in the latter case. Actually, most of the work in the
present paper is about understanding the rate function, and giving a tractable form for it. ♦

3. Large deviations for the empirical measure

Following [13], we introduce the empirical measure

µt :=
1
t

∫
[0,t)

δ(τMs+1,WMs+1) ds , (3.1)

so that, considering

ϕ(u, w) =
w

u
ne has

µt (ϕ) :=

∫
ϕ dµt =

1
∫ t WMs+1 ds
t 0 τMs+1
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Mt∑
i=1

∫ Si

Si−1

Wi

τi
ds +

1
t

∫ t

SMt

WMt +1

τMt +1
ds

=
Z t

t
+

t − SMt

t
WMt +1

τMt +1
, (3.2)

f the latter makes sense.
We will thus deduce a LDP for (Z t/t)t≥0 from a LDP for (µt )t≥0 and the contraction

rinciple ([8] Theorem 4.2.1). The LDP for (µt )t≥0 is precisely the aim of the work by Mariani
nd Zambotti [13]. We have to introduce some more notations.

First, for the sake of simplicity we still assume that X = (0,+∞) ×R so that Assumption
A4) (i.e. X locally compact) in [13] is satisfied. The generic point in X is denoted by

x = (u, w). The application denoted by τ in [13] is thus simply (u, w) ↦→ u in our setting.
This immediately implies that Assumption (A2) in [13] is satisfied, since for all x = (u, w) ∈

0,+∞) × R it holds

ζ (x) = inf
δ>0

sup
{

c ≥ 0 :

∫
B((u,w),δ)

ecu′

ψ(du′, dw′) < +∞

}
= +∞ .

ssumption (A3) therein is equivalent to θ0 = +∞ and we shall not use it.
The set of non-negative Radon measures on X with total mass less than or equal to 1 is

enoted by M̄1(X ). The main advantage of considering this set is that it is compact and Polish
or the vague topology i.e. the weakest topology such that for any continuous and compactly
upported f , the map ν ↦→

∫
f dν := ν( f ) is continuous. Recall that if f is continuous,

ounded and goes to 0 at infinity (i.e. sup|x |>R | f (x)| → 0 as R → ∞), then the application
ν ↦→ ν( f ) is continuous on M̄1(X ).

We denote by M1(X ) the set of probability measures on X . In [12] to ν ∈ M̄1(X ) is
ssociated the probability measure

ν̃(dx) = ν(dx) + (1 − ν(X ))δ∂

here X ∪ ∂ denotes the one point compactification of X .
In both papers the authors then introduce, provided 0 < ν(1/u) :=

∫ 1
u ν(du, dw) < +∞,

ν̄(dx) = ν̄(du, dw) :=
1

ν(1/u)
1
u
ν(du, dw) . (3.3)

Finally recall that if π and π ′ are probability measures on X , the relative entropy of π w.r.t.
π ′ is defined as

H (π |π ′) =

⎧⎨⎩
∫

log
(

dπ
dπ ′

)
dπ if π is absolutely continuous w.r.t. π ′

+∞ otherwise.

Since Assumptions (A1), (A2) and (A4) are satisfied, Proposition 1.5 and Theorem 1.6
n [13] then imply in our framework

heorem 3.1. Define I : M̄1(X ) → [0,+∞] as

I (ν) =

⎧⎪⎨⎪⎩
ν(1/u)H (ν̄|ψ) + (1 − ν(X ))θ0 , if 0 < ν(1/u) < +∞

θ0 , if ν is the null measure (3.4)

+ ∞, otherwise.
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Then I is convex, is a good rate function and the family (Pt )t≥0 of the probability distributions
of (µt )t≥0 satisfies a full LDP with rate function I and speed t.

The specific case where ν is the null measure will play a special role. Notice that under our
hypotheses the null measure is the only one such that ν(1/u) = 0.

Moreover if ν has a singular part denoted by νs , then νs(ζ ) = +∞ since ζ (x) = +∞ for
all x . Therefore our definition of I (ν) matches the one in [13].

An immediate corollary can then be obtained using the contraction principle in a specific
case.

Corollary 3.2. Assume in addition that there exists positive constants K and ε < 1 such that
ψ(|w| ≤ K and u ≥ ε) = 1. Then, (µt (ϕ))t≥0 satisfies a full LDP with the convex good rate
function

J̄ (m) = inf {I (ν) , ν ∈ M̄1(X ) : ν(ϕ) = m} , (3.5)

where as usual the infimum on an empty set is +∞.

Proof. Let ηK be a continuous function such that 1|w|≤K ≤ ηK (w) ≤ 1|w|≤2K . Introduce

ϕK ,ε(u, w) =
w

u ∨ ε
ηK (w) .

irst remark that under our assumptions on ψ , µt (ϕ) = µt (ϕK ,ε) almost surely. Since ϕK ,ε is
ontinuous, bounded and goes to 0 at infinity, ν ↦→ ν(ϕK ,ε) is continuous. One can thus apply
he contraction principle, yielding a full LDP with good rate function

J̄K ,ε(m) = inf {I (ν) , ν ∈ M̄1(X ) : ν(ϕK ,ε) = m} .

f one of J̄ or J̄K ,ε is finite then ν is necessarily absolutely continuous w.r.t. ψ (including the
ase of the null measure) so that |W | ≤ K and τ ≥ ε, ν almost everywhere. Accordingly
(ϕ) = ν(ϕK ,ε) and J̄ = J̄K ,ε. □

To obtain our main result, it remains to relax the boundedness assumptions on τ and W and
o compare J̄ and J defined in (2.8) and (3.5). The next result is a first step in this direction,
emoving the assumption on τ .

roposition 3.3. Assume that there exists a positive constant K such that ψ(|w| ≤ K ) = 1.
hen for m ̸= 0, J̄ (m) = J (m) while for m = 0, J̄ (0) = min(J (0), θ0), where J is defined in
2.8).

roof. The proof is inspired by the proof of Lemma 5.1 in [12].
First remark that if ν ∈ M̄1(X ), introducing the normalized ν1 = ν/ν(X ) (except if ν = 0),

ne has on the one hand ν̄1 = ν̄ and on the other hand

I (ν) = ν(X ) ν1(1/u) H (ν̄1|ψ) + (1 − ν(X )) θ0 ,

rovided ν(1/u) < +∞.
Since for a non null ν, ν(X ) can be any α ∈]0, 1], we deduce that, defining

J̄1(m) = inf {α ν1(1/u) H (ν̄1|ψ) + (1 − α)θ0 ;

α ∈]0, 1], ν1 ∈ M1(X ), ν1(1/u) < +∞, ν1(ϕ) =
m }

,

α
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one has

J̄ (m) = J̄1(m) for m ̸= 0 ; J̄ (0) = min( J̄1(0), θ0) ,

ince for m = 0 one has to also consider the null measure.
Since ν̄(w) = ν(ϕ)/ν(1/u) and ν(1/u) = 1/ν̄(u), it is elementary to see that

J̄1(m) = inf
α∈]0,1] ,γ>0 ,ν′∈M1(X )

{(α/γ ) H (ν ′
|ψ) + (1 − α)θ0; ν

′(u) = γ, ν ′(w) = γ m/α} ,

(3.6)

he correspondence being ν ′
= ν̄1 i.e ν1 = (1/ν ′(u)) u ν ′.

Now we can mimic what is done in [12].
Let p(a, b) = inf{H (ν ′

|ψ) ; ν ′
∈ M1(X ), ν ′(u) = a, ν ′(w) = b}. We have

p∗(x, y) = sup
a,b∈R2

(ax + by − p(a, b))

= sup
a,b∈R2,ν′∈M1(X )

{ax + by − H (ν ′
|ψ); ν ′(u) = a, ν ′(w) = b}

= sup
ν′∈M1(X )

{ν ′(xu + yw) − H (ν ′
|ψ)} = logψ(exτ+yW )

= Λ(x, y)

hanks to the variational definition of the relative entropy. Since p is lower semi continuous
nd convex we have p = (p∗)∗ = Λ∗.

We thus deduce that

J̄1(m) = inf
{
α

γ
Λ∗

(
γ,

mγ
α

)
+ (1 − α)θ0 ;α ∈]0, 1], γ > 0

}
.

ut
α

γ
Λ∗

(
γ,

mγ
α

)
= βΛ∗

(
α

β
,

m
β

)
where β =

α

γ
.

hus

J̄1(m) = inf
{
βΛ∗

(
α

β
,

m
β

)
+ (1 − α)θ0 ;α ∈]0, 1], β > 0

}
.

We will show that, for any β > 0

inf
α∈]0,1]

{
βΛ∗

(
α

β
,

m
β

)
+ (1 − α)θ0

}
= βΛ∗

(
1
β
,

m
β

)
.

Taking α = 1, we see that the left hand side is less than or equal to the right hand side. To
show the converse inequality, let us pick α ∈]0, 1]:

βΛ∗

(
α

β
,

m
β

)
+ (1 − α)θ0 = sup

x,y∈R2
{αx + (1 − α)θ0 + my − βΛ(x, y)}

≥ sup
x,y∈R2

{x ∧ θ0 + my − βΛ(x, y)}.

ince W is bounded, eyW
≥ C(y) > 0 for all y, so that we have for all x > θ0 and all y,

xτ+yW xτ
ψ(e ) ≥ C(y)ψ(e ) = +∞ .
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This shows that Λ(x, y) = +∞, for all x > θ0 and for all y. Hence, the supremum on x can
e restricted to the supremum on {x ≤ θ0}:

βΛ∗

(
α

β
,

m
β

)
+ (1 − α)θ0 ≥ sup

x,y∈R2
{x ∧ θ0 + my − βΛ(x, y)}

= sup
x≤θ0,y∈R

{x + my − βΛ(x, y)}

= βΛ∗

(
1
β
,

m
β

)
and the desired inequality is proved. □

Remark 3.4. Let us remark on a simple example that the rate function J defined in (2.8) is
not lower semi continuous. If W = 1, one has Z t = Mt and one easily sees that (recall (2.7))
supx,y∈R2 Λ(m, β, x, y) = +∞ except for β = m yielding J (m) = supx {x − m logE (exτ )} as
expected. Notice that J (0) = +∞ since β > 0. In particular if τ has an exponential distribution
with parameter 1, θ0 = 1, Z t is the standard Poisson process and J (m) = 1 − m + m log m for
> 0 while J (m) = +∞ if m ≤ 0. Accordingly J is not lower semi continuous at m = 0,

nd J̄ is precisely the lower semi continuous envelope of J .
We did not check correctly this point in the previous version of the paper and the same

inor mistake is made in Lemma 5.1 of [12]. ♦

One can ask about whether the infimum defining J1 is achieved or not, hence is a minimum.
his question is briefly studied in Lemma 5.1 of [12], where the argument p.22, showing that
n therein is tight, sounds strange. Let us give a complete proof.

roposition 3.5. Under the assumptions of Proposition 3.3, for m ̸= 0, the infimum in (3.5)
s a minimum, provided it is finite.

roof. We use the expression (3.6) in order to prove the proposition. Assume that m ̸= 0. If
J̄1(m) < +∞ consider a minimizing sequence (γn, αn, ν

′
n)n≥0. First, H (ν ′

n|ψ) < +∞ (at least
or large n’s), so that ν ′

n is absolutely continuous with respect to ψ , and so ν ′
n(|w| ≤ K ) = 1.

t follows that γn/αn ≤ K/|m| hence γn ≤ K/|m|.
Since αn ∈]0, 1] and γn is bounded, one can find a subsequence still denoted (αn, γn)n≥0

onverging to (α, γ ) ∈ [0, 1] × [−K/|m|, K/|m|]. In addition, for n large enough,

(αn/γn)H (ν ′

n|ψ) ≤ J̄1(m) + 1 := C

o that

H (ν ′

n|ψ) ≤ C (γn/αn) ≤ C (K/|m|) .

ince the entropy is bounded, the sequence (ν ′
n)n≥0 is tight and one can thus also find a

subsequence weakly converging to ν ′
∞

which satisfies H (ν ′
∞

|ψ) ≤ lim infn H (ν ′
n|ψ) < +∞

hanks to the lower semi continuity of the entropy w.r.t. the first variable.
Recall that γn = ν ′

n(u). For all M > 0, we have that γn ≥ ν ′
n(u∧M) and taking the limit in n,

we deduce that ν ′
∞

(u ∧ M) = limn ν
′
n(u ∧ M) ≤ γ and finally using the monotone convergence

′ ′ ′
ν
∞

(u) = γ ≤ γ . We deduce in particular that γ > 0 since ν
∞

(u = 0) = 0 because the
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∞

is absolutely continuous w.r.t. ψ and ψ(u = 0) = 0 by assumption. Moreover,
ince K ≥ γn|m|/αn and γn →n→∞ γ > 0, we also have that α = limn→∞ αn > 0. In
ddition, from the absolute continuity of ν ′

n and ν ′
∞

w.r.t. ψ , we deduce that ν ′
∞

(|w| ≤ K ) = 1
nd

mγ /α = lim
n
ν ′

n(w) = lim
n
ν ′

n(w 1|w|≤K ) = ν ′

∞
(w 1|w|≤K ) = ν ′

∞
(w) .

ntroduce νn = (1/γn) u ν ′
n . νn is a sequence of probability measures that vaguely converges to

∞ satisfying ν∞(X ) = γ ′/γ , ν∞(1/u) = 1/γ and ν∞(ϕ) = m/α. Of course ν̄∞ = ν ′
∞

.
According to Lemma 2.3 and Lemma 2.2 in [12] (based on the variational formula for the

ntropy)

lim inf
n

1
γ n

H (ν ′

n|ψ) ≥ (γ ′/γ )
1
γ

H (ν ′

∞
|ψ) + (1 − (γ ′/γ ))θ0 .

Finally define µ∞ = αν∞ so that µ∞(X ) = α(γ ′/γ ) ≤ 1 and µ∞ ∈ M̄1(X ). From what
precedes we deduce

J̄1(m) = lim inf
n

(
(αn/γn)H (ν ′

n|ψ) + (1 − αn)θ0
)

≥ µ∞(1/u) H (µ̄∞|ψ) + ((1 − α) + α(1 − (γ ′/γ ))θ0)

= µ∞(1/u) H (µ̄∞|ψ) + (1 − µ∞(X ))θ0

and in addition µ∞(ϕ) = m. Hence the infimum for J̄ (m) is achieved at µ∞. □

4. Large deviations for the cumulative process when W is bounded

In this section, we shall deduce a LDP for (Z t/t)t≥0 starting with (3.2). We still assume
that W is a bounded random variable, therefore it consists in relaxing the assumption on τ in
Corollary 3.2.

To this end, for ε > 0, introduce τ ε = τ + ε and ψϵ the distribution of (τ ε,W ). We then
define I ε as in (3.4), replacing ψ by ψε, and J̄ ε as in (3.5) replacing I by I ε.

heorem 4.1. Assume that there exists a positive constant K such that ψ(|w| ≤ K ) = 1.
Then, (Z t/t)t≥0 satisfies a full LDP with the good convex rate function J̄ .

Proof. The proof will be done in several steps.

Step 1. We shall first prove the

Lemma 4.2. Assume that there exists a positive constant K such that ψ-almost surely,
|W | ≤ K . Then, (Z t/t)t≥0 satisfies a weak LDP with the convex rate function

J̃ (m) = sup
δ>0

lim inf
ε→0

inf
|z−m|<δ

J̄ ε(z) . (4.1)

Proof of the lemma. Following the same lines as in (3.2)

µεt (ϕ) =
1
t

Mε
t∑

Wi +

(t − SεMε
t
)WMε

t +1

t τ ε ε
.

i=1 Mt +1
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Since τ ε ≥ τ , we deduce that Mε
t ≤ Mt . Accordingly⏐⏐⏐⏐⏐µεt (ϕ) −

1
t

Mt∑
i=1

Wi

⏐⏐⏐⏐⏐ ≤
1
t

⏐⏐⏐⏐⏐⏐
Mt∑

i=Mε
t +1

Wi

⏐⏐⏐⏐⏐⏐ +

⏐⏐⏐⏐⏐ (t − SεMε
t
)WMε

t +1

t τ εMε
t +1

⏐⏐⏐⏐⏐
≤

K
t

(
(Mt − Mε

t ) + 1
)
.

Using Theorem 2.2, it is then sufficient to prove that (Mε
t /t)ε is an exponentially good

approximation of Mt/t , i.e. that

lim
ε→0

lim sup
t→∞

1
t

logP(|Mt − Mε
t | > δ t) = −∞ .

The proof is similar to the one of [12] Lemma 5.4 where a different approximation is used.
Denote as usual by ⌊x⌋ the integer part of x ∈ R. Recall that Mε

t ≤ Mt and Sεn = Sn + nε.
Choose some δ > 0 and A > 0. Then

P(Mt − Mε
t > tδ) ≤

⌊At⌋∑
n=1

P(Mt − Mε
t > tδ ; Mt = n) + P(Mt > ⌊At⌋)

=

⌊At⌋∑
n=1

P(Mε
t < n − tδ ; Mt = n) + P(S⌊At⌋ ≤ t)

≤

⌊At⌋∑
n=1

P(Sε
⌊n−tδ⌋ ≥ t; Mt = n) + P(S⌊At⌋ ≤ t)

≤

⌊At⌋∑
n=1

P(S⌊n−tδ⌋ ≥ t − (n − tδ)ε; Sn ≤ t) + P(S⌊At⌋ ≤ t)

≤

⌊At⌋∑
n=1

P(Sn − S⌊n−tδ⌋ ≤ (n − tδ)ε) + P(S⌊At⌋ ≤ t)

≤ At P(S⌊tδ⌋ ≤ Atε) + P(S⌊At⌋ ≤ t) ,

here we have used that the distribution of S j − Sk is the one of S j−k for any positive integers
j ≥ k.

According to Markov inequality

P(S⌊tδ⌋ ≤ Atε) = P(e−S⌊tδ⌋/ε ≥ e−At ) ≤ exp(At + ⌊tδ⌋ logE(e−τ/ε)) .

hus

lim sup
t→∞

1
t

log(At P(S⌊tδ⌋ ≤ Atε)) = A + δ logE(e−τ/ε) .

ince logE(e−τ/ε) →ε→0 −∞, we have

lim
ε→0

lim sup
t→∞

1
t

log(At P(S⌊tδ⌋ ≤ Atε)) = −∞ .

Similarly

P(S ≤ t) ≤ exp(t + ⌊At⌋ logE(e−τ )) ,
⌊At⌋
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so that choosing A large enough, we can make 1
t logP(S⌊At⌋ ≤ t) as small as we want i.e. less

han −B for any given B > 0. It is then enough to let ε go to 0 and then B go to infinity to
btain the result. □

In particular we know from Theorem 2.2 that J̃ is lower semi-continuous so that its level
ets are closed.

tep 2. We shall now identify J̃ with J̄ . Recall that for all m ̸= 0, J̄ (m) = J (m) =

nfβ>0 supx,y∈R2 Λ(m, β, x, y), where Λ is defined in (2.7).

emma 4.3. Under the assumptions of Lemma 4.2, J̃ ≥ J̄ .

roof of the Lemma. Since τ > 0 almost surely, one can find xτ < 0 such that E(exτ τ ) = e−1

o that

sup
x,y

Λ(m, β, x, y) ≥ sup
x

Λ(m, β, x, 0) ≥ xτ + β .

n particular if J (m) < +∞ the infimum in β has to be taken for β ≤ J (m) − xτ = βτ .
From now we assume that J̃ < +∞, indeed if J̃ (m) = +∞, the inequality J̄ (m) ≤ J̃ (m)

learly holds. The key remark is the following equality

Λε(m, β, x, y) = Λ(m, β, x, y) − xβε . (4.2)

f θ0 < +∞ it immediately follows from (4.2) and the fact that according to the proof of
roposition 3.3 the supremum in J̄ can be restricted to {x ≤ θ0} that

J̄ (m) ≤ J̄ ε(m) + βτ ε θ0,

or the case m = 0 just remark in addition that θ0 ≤ θ0(1 + βτε).
One can find a sequence (mn, εn)n≥0 going to (m, 0) such that J̃ (m) = lim infn→∞ J̄ εn (mn).

ince J̄ is lower semi continuous,

J̄ (m) ≤ lim inf
n→∞

J̄ (mn) ≤ lim inf
n→∞

( J̄ εn (mn) + θ0βτ εn) = J̃ (m) .

If θ0 = +∞ consider the previous sequence (mn, εn)n≥0. One can in addition find a sequence
βn)n≥0 and some sequence (ηn)n≥0 going to 0 such that for all (x, y),

Λ(mn, βn, x, y) − xβnεn ≤ J̃ (m) + ηn .

ince βn ∈ [0, βτ ], we may assume that βn → β up to considering a subsequence. β has to be
ositive, otherwise, taking limits as n → ∞ we would get that for all (x, y)

Λ(m, 0, x, y) = x + my ≤ J̃ (m) < +∞

hich is impossible. Hence β > 0 and taking limits again, we obtain Λ(m, β, x, y) ≤ J̃ (m)
or some β > 0 and all (x, y) so that J̄ (m) ≤ J̃ (m). □

We turn to the converse inequality

emma 4.4. Under the assumptions of Lemma 4.2, J̃ ≤ J̄ .

roof. It is enough this time to assume that J̄ (m) and thus J (m) is finite. Notice furthermore
han if m = 0 and J̄ (0) = θ0 there is nothing to prove since J̃ (0) ≤ lim infε→0 J̄ ε(0) ≤ θ0. As
consequence if m = 0 we may assume in addition that J (0) < θ .
0
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Recall that J̄ is defined in (3.5). Let µk be a minimizing sequence of J̄ (m) in M̄1(X ),
.e. I (µk) ≤ J̄ (m) + ηk with ηk →k→∞ 0 and µk(ϕ) = m. From the definition of I , we have
n particular µk(1/u) < +∞. Let us introduce µεk the push forward of µk by the application
ε : (u, w) ↦→ (u + ε,w) (i.e. if (τ,W ) is distributed according to µk , µεk is the distribution of
τ + ε,W )). Of course µεk(X ) →ε→0 µk(X ) and µεk(1/u) →ε→0 µk(1/u) thanks to Lebesgue’s
ounded convergence theorem, and finally, since W is bounded for all considered measures,
he same theorem shows that

µεk(ϕ) = mε
k → m = µk(ϕ) as ε → 0.

ince the minimizing measure is not the null measure, we may assume that µk(X ) ≥ χ > 0
for all k, so that H (µ̄k |ψ) < +∞.

In addition, we have for any bounded continuous function f∫
f (u, w) µ̄εk(du, dw) =

∫
f (u, w)

1
µεk(1/u)

1
u
µεk(du, dw)

=

∫
f (u + ε,w)

1
µk(1/(u + ε))

1
u + ε

µk(du, dw)

=

∫
f (u + ε,w)

µk(1/u)
µk(1/(u + ε))

u
u + ε

µ̄k(du, dw)

ince 1/(u + ε) ≤ 1/u which is µk integrable and u/u + ε ≤ 1, it is thus immediately seen,
thanks to Lebesgue’s convergence theorem, that µ̄εk → µ̄k (and of course ψε

→ ψ) weakly as
ε → 0.

Since H (µ̄k |ψ) < +∞, µ̄k is absolutely continuous w.r.t. ψ with a density denoted by gk .
It follows that µ̄εk is absolutely continuous w.r.t. ψε with a density given by

gεk (u, w) =
µk(1/u)

µk(1/(u + ε))
u − ε

u
gk(u − ε,w) = Cε u − ε

u
gk(u − ε,w) ,

ecall that ψε(u > ε) = 1 so that we only need to consider such u’s.
We thus have

H (µ̄εk |ψ
ε) =

∫
gεk log gεk dψε

=

∫
log

(
Cε u

u + ε
gk(u, w)

)
Cε u

u + ε
gk(u, w)ψ(du, dw) .

otice that, for ε ≤ 1, Cε u
u+ε

gk(u, w) ≤ C1 gk(u, w) so that⏐⏐⏐⏐log
(

Cε u
u + ε

gk(u, w)
)

Cε u
u + ε

gk(u, w)
⏐⏐⏐⏐

≤ max
(
e−1

; log(C1 gk(u, w)) C1 gk(u, w)
)

which is ψ integrable since H (µ̄k |ψ) < +∞. It follows, using again Lebesgue’s theorem, that
limε→0 H (µ̄εk |ψ

ε) = H (µ̄k |ψ).
For a given δ > 0, we thus have

lim inf
ε→0

inf
|z−m|<δ

J̄ ε(z) ≤ lim inf
ε→0

J̄ ε(mε
k) ≤ J (m) + ηk .
The upper bound does not depend on δ and it remains to make ηk → 0 to get the result. □
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Step 3. In order to get the full LDP we need to check condition (3) in Theorem 2.2 i.e. that
or all closed set F ,

inf
z∈F

J̄ (z) ≤ lim sup
ε→0

inf
z∈F

J̄ ε(z) .

e may of course assume that the right hand side is finite. For θ0 < +∞ it is an immediate
onsequence of J̄ (m) ≤ J̄ ε(m) + βτ θ0 ε.

If θ0 = +∞, remark that for β < βτ

sup
x,y

Λ(m, β, x, y) ≥ Λ(m, β, 0, 1) = m − β logE(eW ) ≥ m − βK ≥ m − βτ K ,

nd similarly

sup
x,y

Λ(m, β, x, y) ≥ Λ(m, β, 0,−1) = −m − β logE(e−W ) ≥ −m − βτ K .

t follows J ε(m) ≥ |m| − βτ K for all ε (including ε = 0), so that the level sets J̄ ε ≤ M are
ll included in the ball |m| ≤ M + βτ K .

For a closed set F, one can thus find a sequence εn, zn with ε →n→∞ 0 such that
J̄ εn (zn) ≤ infz′∈F J εn (z′) + 1/n and zn ∈ F ∩ {|m| ≤ C} for some C large enough. Taking

subsequence if necessary, we may assume that zn → z ∈ F since F is closed. We have
J̄ εn (z) ≥ J̄ εn (zn) − (1/n). We can thus argue as in the proof of Lemma 4.3 to show that

lim sup
n

inf
z′∈F

J εn (z′) = lim sup
n

J̄ εn (z) ≥ J̄ (z) ≥ inf
z′∈F

J̄ (z′) . □

. Deviations for the cumulative process in the general case. Proof of Theorem 2.4

We will now try to relax the boundedness assumption on W . We thus introduce W n
=

W ∨ (−n) ∧ n, ψn the distribution of (τ,W n), I n , J̄ n and J n are defined accordingly. It is thus
atural to look at

J̃ (m) = sup
δ>0

lim inf
n→+∞

inf
|z−m|<δ

J̄ n(z) . (5.1)

e shall this time first compare J̃ and J̄ .

emma 5.1. It holds J̄ ≤ J̃ .

roof. As in the proof of Lemma 4.3, supx,y Λ
n(m, β, x, y) ≥ xτ +β so that if J n(m) < +∞

he infimum in β has to be taken for β ≤ J n(m) − xτ .
If J̃ (m) < +∞ one can find a sequence (mn, βn)n≥0 such that mn → m, βn ∈ (0, βτ ] where

τ ≤ J̃ (m) + 1 − xτ and for n large enough and all (x, y),

x + mn y − βn logE(exτ+yW n
) ≤ J̃ (m) + 1/n .

aking a subsequence if necessary we may assume that βn → β∞.
We want to pass to the limit in the previous inequality. We may assume that E(exτ ) < +∞,

therwise, for all β > 0,

x + my − β logE(exτ+yW ) = −∞ .

ince exτ+yW n 1yW n≤0 = exτ+yW n 1yW≤0 is dominated by exτ 1yW≤0, which is assumed to be
ntegrable, we may apply the bounded convergence theorem and get lim E(exτ+yW n 1 n ) =
n yW ≤0
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E(exτ+yW 1yW≤0). The other part, limn E(exτ+yW n 1yW n>0) = E(exτ+yW 1yW>0) is a consequence
f the monotone convergence theorem.

We may thus conclude that for all (x, y),

x + my − β∞ logE(exτ+yW ) ≤ J̃ (m) ,

ence J (m) ≤ J̃ (m), provided β∞ > 0. If β∞ = 0 we have obtained that for all x such that
E(exτ ) < +∞, x + my ≤ J̃ (m) which is impossible if m ̸= 0, or if m = 0 and J̃ (0) < θ0.

ince J̄ (0) ≤ θ0, the case J̃ (0) ≥ θ0 is immediate. □

For the converse

emma 5.2. It holds J̄ ≥ J̃ .

roof. We shall follow the same route as for the proof of Lemma 4.4. We may similarly assume
hat J (m) is finite and J (0) < θ0, so that the minimizing measure is not the null measure. We
hen consider a sequence µk such that I (µk) ≤ J̄ (m) + ηk , and we may assume again that

k(X ) ≥ χ > 0 for all k so that supk H (µ̄k |ψ) < +∞.
We may decompose ψn as

ψn(du, dw) = 1|w|<nψ(du, dw) + γ n
+

(du, dw) + γ n
−

(du, dw)

here γ n
+

is the joint law of (τ, n 1W≥n) and γ n
−

is the joint law of (τ,−n 1W≤−n). Of course
n weakly converges towards ψ .
We now introduce µn

k = 1|w|<n µk so that

µ̄n
k =

µk(1/u)
µk(1|w|<n (1/u))

ψ(|w| < n)
dµ̄k

dψ
1|w|<n ψ

n .

It is then easily seen that µn
k weakly converges to µk , that µn

k (ϕ) = mn
k converges to µk(ϕ) = m

and finally since 1|w|<n ψ
n

= 1|w|<n ψ , denoting by

cn
k =

µk(1/u)
µk(1|w|<n (1/u))

ψ(|w| < n)

hat

H (µ̄n
k |ψ

n) =

∫
cn

k log
(

cn
k

dµ̄k

dψ

)
1|w|<n dµ̄k

oes to H (µ̄k |ψ) as n goes to infinity. We may thus conclude as in the proof of Lemma 4.4. □

In order to get an LDP result for (Z t/t)t≥0 it remains to study the approximation of (Z t/t)t≥0
y {(Zn

t /t)t≥0}n∈N. We may decompose

|Z t − Zn
t | =

Mt∑
i=1

(Wi − n)+ +

Mt∑
i=1

(Wi + n)− , (5.2)

here u+ = max(u, 0) and u− = max(−u, 0). We then have

emma 5.3. Assume that θ0 > 0 and η0 > 0. For all δ > 0,

lim
n→∞

lim sup
t→∞

1
t

logP
(⏐⏐⏐⏐ Z t

t
−

Zn
t

t

⏐⏐⏐⏐ > 2δ
)

≤ −
η0 δ

2
.

In particular if η = +∞, {(Zn/t) } is an exponentially good approximation of (Z /t) .
0 t t≥0 n∈N t t≥0
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s

S

N
i

I

Proof. Since η0 and θ0 are positive, E(τ ) and E(|W |) are both finite.
From (5.2), we deduce that

P
(⏐⏐⏐⏐ Z t

t
−

Zn
t

t

⏐⏐⏐⏐ > 2δ
)

≤ P

(
Mt∑

i=1

(Wi − n)− > δt

)
+ P

(
Mt∑

i=1

(Wi − n)+ > δt

)
ote that using the elementary log(a + b) ≤ max(log(2a), log(2b)) it is enough to look at

P

(
Mt∑

i=1

(Wi − n)+ > δt

)
,

ince the other term can be treated similarly.
Using that the (Wi )i≥1’s are i.i.d. we may write for δ > 0 and c > 0, (as usual an empty

um is equal to 0 by convention)

P

(
Mt∑

i=1

(Wi − n)+ > δt

)

≤ P

(
⌊ct⌋∑
i=1

(Wi − n)+ >
δt
2

)
+ P

⎛⎝ Mt∑
i=⌊ct⌋+1

(Wi − n)+ >
δt
2

⎞⎠
≤ P

(
⌊ct⌋∑
i=1

(Wi − n)+ >
δt
2

)

+ P

⎛⎝⎧⎨⎩
Mt∑

i=⌊ct⌋+1

(Wi − n)+ >
δt
2

⎫⎬⎭ ∩ {1 + ⌊ct⌋ ≤ Mt < 2⌊ct⌋}

⎞⎠
+ P

⎛⎝⎧⎨⎩
Mt∑

i=⌊ct⌋+1

(Wi − n)+ >
δt
2

⎫⎬⎭ ∩ {Mt ≥ 2⌊ct⌋}

⎞⎠
≤ 2P

⎛⎝ ⌊ct⌋∑
j=1

(W j − n)+ >
δt
2

⎞⎠+ P (Mt ≥ 2⌊ct⌋)

tudy of P (Mt ≥ 2⌊ct⌋). Start with the second term in the sum above. According to theorem
2.3 in [15], we know that Mt/t satisfies a LDP with rate function Jτ given by

Jτ (u) =

{
supλ∈R{λ− u logE(eλτ )} if u ≥ 0 ,
∞ if u < 0 .

otice that Jτ (u) = u Λ∗(1/u, 0) for u > 0. In addition (see Lemma 2.6 in [15]) the supremum
s achieved for λ ≤ 0 if u ∈ (1/E(τ ) , +∞) and Jτ is non-decreasing on this interval.

It follows that for 2c > 1/E(τ ),

lim sup
t→∞

1
t

logP (Mt ≥ 2⌊ct⌋) ≤ −Jτ (⌊ct⌋) . (5.3)

n order to get limn→∞ lim supt→+∞

1
t logP (Mt ≥ 2⌊ct⌋) ≤ −∞ for some sequence cn (to be

chosen later) it remains to show that

Jτ (u) −→ +∞.

u→∞
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Recall that xτ satisfies E(exτ τ ) = e−1, so that for u ≥ 0,

Jτ (u) = sup
λ∈R

{λ− u logE(eλτ )} ≥ xτ − u logE(exτ τ ) ≥ u + xτ

ielding the desired result.

tudy of P
(∑⌊ct⌋

j=1(W j − n)+ > δt
2

)
. We handle this term with Cramer’s theorem. Defining

Ψn(λ) = logE
[
eλ(W−n)+

]
,

Ψ ∗

n (x) = sup
λ∈R

{λx − Ψn(λ)} ,

e have

lim sup
t→∞

1
t

logP

⎛⎝⌊ct⌋∑
j=1

(W j − n)+ > δt/2

⎞⎠ = lim sup
t→∞

c
⌊ct⌋

logP

⎛⎝⌊ct⌋∑
j=1

(W j − n)+ > δt/2

⎞⎠
≤ lim sup

t→∞

c
⌊ct⌋

logP

⎛⎝⌊ct⌋∑
j=1

(W j − n)+ > δ⌊ct⌋/2c

⎞⎠
≤ − c inf

x∈[δ/2c,+∞)
Ψ∗

n (x).

s the function x ↦→ Ψ ∗
n (x) is non-decreasing on [E((W − n)+),+∞), we have

lim sup
t→∞

1
t

logP

⎛⎝ ⌊ct⌋∑
j=1

(W j − n)+ > δt/2

⎞⎠ ≤ − cΨ ∗

n (δ/2c) ,

rovided δ/2c ≥ E((W − n)+). Notice that for λ < η0,

cΨ ∗

n (δ/2c) ≥
λδ

2
− c log

(
1 + E

[
(eλ(W−n)

− 1)1W>n
])
,

ince both E((W − n)+) and log
(
1 + E

[
(eλ(W−n)

− 1)1W>n
])

are going to 0 as n → ∞, it is
lways possible to choose cn growing to infinity such that as n → ∞

cn E((W − n)+) → 0 and cn log
(
1 + E

[
(eλ(W−n)

− 1)1W>n
])

→ 0,

We get

lim
n→∞

lim sup
t→∞

1
t

logP

⎛⎝ ⌊ct⌋∑
j=1

(W j − n)+ > δt/2

⎞⎠ ≤ −
λδ

2
.

e may optimize in λ and plug the same sequence cn in (5.3) completing the proof. □

We will use the previous lemma to deduce

orollary 5.4. Under the assumptions of Lemma 5.3, (Z t/t)t≥0 is exponentially tight, i.e. for
ll α > 0, there exists a compact set Kα such that

lim sup
1

logP
(

Z t
/∈ K c

α

)
< −α.
t→∞ t t
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T

i

S

P

s

Proof. Since Zn
t /t is an approximation of Z t/t and satisfies a full LDP according to

heorem 4.1, we can decompose the probability as following: for each n, and for all δ:

P
(

Z t

t
/∈ [−A, A]

)
≤ P

(⏐⏐⏐⏐ Z t

t
−

Zn
t

t

⏐⏐⏐⏐ > δ

)
+ P

(
Zn

t

t
/∈ [−A + δ, A − δ]

)
≤ P

(⏐⏐⏐⏐ Z t

t
−

Zn
t

t

⏐⏐⏐⏐ > δ

)
+ P

(
Zn

t

t
< −A + δ

)
+ P

(
Zn

t

t
> A − δ

)
.

≤ 3 max
(
P
(⏐⏐⏐⏐ Z t

t
−

Zn
t

t

⏐⏐⏐⏐ > δ

)
,P
(

Zn
t

t
< −A + δ

)
,

P
(

Zn
t

t
> A − δ

))
. (5.4)

By Lemma 5.3, Zn
t /t and Z t/t satisfy

∀δ > 0, lim
n→∞

lim sup
t→∞

1
t

logP
(⏐⏐⏐⏐ Z t

t
−

Zn
t

t

⏐⏐⏐⏐ > δ

)
= −

η0δ

4
,

.e.

∀α > 0,∀δ >
2α
η0
, ∃n(α, δ),∀n > n(α, δ), lim sup

t→∞

1
t

logP
(⏐⏐⏐⏐ Z t

t
−

Zn
t

t

⏐⏐⏐⏐ > δ

)
≤ −α.

(5.5)

We just have to study P
(

Zn
t
t > A − δ

)
and the symmetric case. We know from Theorem 4.1

that:

lim sup
t→∞

1
t

logP
(

Zn
t

t
> B

)
≤ − inf

m>B
J̄ n(m).

ince J̄ n has compact level sets, for all α > 0 one can choose a level Bα such that ∀m >

Bα, J n(m) > α. The result follows by choosing A = Bα + δ. □

roof of Theorem 2.4. In the case where η0 = +∞, using the approximation W n , Lemmas 5.1
and 5.2 allow to obtain the weak LDP. The full LDP derives from Corollary 5.4 combined with
Lemma 2.3.

If η0 < +∞ we only obtain asymptotic deviation bounds. Recall that m = E(W )/E(τ ) is
the limit of Z t/t as t → +∞. For all κ ∈ (0, 1) and a > 0, it holds

P
(

Z t

t
≥ m + a

)
≤ P

(
Zn

t

t
≥ m + κa

)
+ P

(⏐⏐⏐⏐ Z t

t
−

Zn
t

t

⏐⏐⏐⏐ ≥ (1 − κ)a
)
,

o that, for all n ≥ 0,

lim sup
t→∞

1
t

logP
(

Z t

t
≥ m + a

)
≤ max

[
lim sup
t→+∞

1
t

logP
(

Zn
t

t
≥ m + κa

)
; lim sup

1
t

logP
(⏐⏐⏐⏐ Z t

t
−

Zn
t

t

⏐⏐⏐⏐ ≥ (1 − κ)a
)]

.

t→∞
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C

Taking the lim inf in n we deduce

lim sup
t→∞

1
t

logP
(

Z t

t
≥ m + a

)
≤ max

[
lim inf

n→∞
(− inf

z≥m+κa
J̄ n(z)) ; −

η0 (1 − κ)a
4

]
≤ − min

[
lim sup

n→∞

( inf
z≥m+κa

J̄ n(z)) ;
η0 (1 − κ)a

4

]
.

To complete the proof of the Theorem it is enough to prove

Lemma 5.5. Assume η0 > ∞, then for any z0 ∈ R,

lim sup
n→∞

( inf
z≥z0

J̄ n(z)) ≥ inf
z≥z0

J̄ (z) .

Proof. The proof is close to the one of Lemma 5.1. We may of course assume that the
left hand side is finite, denoted by C(z0). As usual, for a fixed ε > 0, we may find a
sequence (zn)n≥0 such that for any n ∈ N, zn ≥ z0 and infz≥z0 J̄ n(z) + ε ≥ J̄ n(zn), so that
lim supn→∞ J̄ n(zn) ≤ C(z0) + ε.

We want to show that the sequence (zn)n≥0 is bounded. The key point is to remark that,
taking the sign of y into account

x + zy − β logE
(

exτ+yW n
)

≥ x + zy − β logE
(

exτ+|y||W n
|

)
≥ x + zy − β logE

(
exτ+|y||W |

)
so that for all n,

J̄ n(z) ≥ J |.|(z) := inf
β>0

sup
x∈R,y≥0

{
x + |z|y − β logE

(
exτ+y|W |

)}
.

As before, taking y = 0 we see that the infimum in β has to be taken for β ≤ βτ =

(z0) + 1 − xτ , at least for n large enough.
Taking x = 0 we see that J |.|(z) ≤ C(z0) + ε implies

|z|(η0/2) ≤ C(z0) + βτ logE
(
e(η0/2)|W |

)
,

i.e |z| ≤ A for some positive A that does not depend on n. This shows that (zn)n≥0 is bounded,
so that taking a subsequence if necessary zn → zlim ≥ z0.

Consider J̄ (zlim). We may now mimic the proof of Lemma 5.1 replacing mn by zn and m
by zlim , so that

inf
z≥z0

J̄ (z) ≤ J̄ (zlim) ≤ C(z0) + ε.

It remains to let ε go to 0. □

6. Application to Hawkes processes. Corrigendum

In [6] Theorem 2.12 and Corollary 2.13, we gave an application to Hawkes processes of
our main results, with a wrong bound.

As we have seen the correct one in Theorem 2.12 is (1 − κ)θ0a/4 (θ0 there is η0 in the
present paper), the factor 1/4 is missing in [6]. The correct term in Corollary 2.13 is also
(1 − κ)θ0a/4. Indeed according to Eq. (2.9) therein, N h

t = N̂ h
t + Rh

t with 0 ≤ Rh
t ≤ WMh

t +1. If
W is bounded we may thus write N h

t = µεt (ϕ) + Aεt where Aεt ≤
K
t ((Mt − Mε

t ) + 2), so that
the proof of Theorem 4.1 remains valid replacing Z t/t by N h

t /t .
Also remark that we have to replace J by J̄ , i.e. take care of the case z = 0, even if here

m > 0 since W ≥ 0 and W ̸= 0.
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